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A theory for differently resistive hereditarily elastic solidsis elucidated herein. The fun- 
damental statements of different modulus elasticity theory [l-4], as well as the ordinary 
theory of hereditarily elastic solid [5-T], are utilized. 

By analyzing the creep tests of various materials, it is easy to establish that in the 
enormous majority of cases they “creep differently”, i. e. the strain processes under pure 
tension (plus) and pure compression (minus) proceed differently in time. It is also estab- 
lished by tests that these materials are of different modulus in many cases, i.e. the instan- 

taneous moduli of elasticity in tension (E+) and compression (E-) also differ. 

Attempts to construct a theory of a hereditarily elastic solid, differently resistive to 
tension and compression, have been made earlier [8-101. These papers are not discussed 
at all herein since statements differing, in principle, from the initial statements of the 

theory proposed herein are underlying. 

1. Let the material of the solid under consideration be such that under pure tension 
in any direction it has: An instantaneous modulus of elasticity E’, an insatantaneous 
Poisson ratic y - , a hereditary strain coefficient K+ (t - -c) and a hereditary transverse 
strain coefficient pi (t - x); while for pure compression in any direction it has respec- 

tively: E-, Y-, K-(t - T), p-(t - T). As usual, t is here the time under consider- 
ation, and T is the time when the stress would be applied, i.e. the age of the material 

up to loadir,g time. 
It is assumed that under simultaneous pure tension and compression in different mutu- 

ally orthogonal directions, the characteristics of the solid remain invariant under uniform 

tension or compression. 

It is assumed that the solid under consideration undergoes only slight strains for any 
state of stress, and is subject to the general regularities of a hereditary elastic continuum. 
In particular, according to the results elucidated in p-4, 61, the existence of a creep 
potential is assumed for the three-dimensional state of stress, which as is known, is con- 
sidered quite probable [6]. 

2, According to the Volterra principle of hereditary elasticity [6], the total strain of 

a solid consists of the instantaneous strain which is determined by the stress acting at this 
time, and the hereditary strain. Therefore, if a tensile stress cTllo(a) acts for a time & 
at some point of a solid (the arguments zi are omitted here and henceforth) at a time z , 

then we shall have the instantaneous strains 

e,,O(t) = al:(t) / E+, e,,“(t) q = ea3”(t) =; - v+ulc(t) / E-+ (2.1) 
and the small hereditary strains 

dell* = ullo (~)dzK+(t - T) 

k0 -~. &330 = - p+(t - T) ul; (a)dzK+(t - T) (2.2) 

26 
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in the principal direction x1’ and the mutually perpendicular directions zs” and zs” 
orthogonal to x1”. 

If a compressive stress acts at the time z then we shall evidently have, respectively 

e,,” (t) = - or:(t) I E-, ez2’ (t) = es> (t) = Y-(J~~~ (t)lE- (2.3) 

de,,’ = - crllo (T) dzK-(t - z) (2.4) 
d.e22o = dessO = p-(t - T)(J~~~ (T) dzK-(t - T) 

As usual [6], integrating the dependences (2.2) and (2.4) with respect to r between 
- 00 and t and adding the appropriate instantaneous elastic strains (2.1) and (2.3) 
thereto, we obtain the initial formulas of the law of hereditary elasticity. 

For urr“ (t) > 0 

ello (t) = - =‘;o) + jm 
%I0 (q K’ (t - z) dt 

t 
ea2’ (t) = es3’ (t) = - v+ 2!.$ _ 

5 CL+ (t - r) 611’ (z) K+ (t - z) dz 
(2.5) 

--a 

For $lc (t) < 0 
e,,‘(t) = _ Z!$.J!l _ C Ql10 (z) K- (t - T) dz 

--co 
t (2.6) 

et2’ (t) = esso (t) = v- y + 
c 

p- (t - z) qlo (z) Ii-. (t - r) dt 
. 

-cc 

3, Now, let there be a three-dimensional state of stress and let all the principal stresses 
oil0 (t), oz2’(t), us,“(t) act simultaneously at the point under consideration. In this 
case all the principal stresses are evidently either tensile oiio (t) > 0 or compressive 
o;i”(t) < (1, or one of the principal stresses is of a different sign than the remaining 

two, i.e. two of the principal stresses are tensile and the third is compressive, or conver- 

sely, two of the principal stresses are compressive, and the third tensile. Clearly, any 
other general cases of the state of stress are impossible. 

The first two cases, i. e. when oiic (t) > () or oiio (t) < 0, are of no special interest. 
In these cases, i. e. in domains and points of the first kind [l]. the ordinary theory of a 

hereditary elastic solid holds with the appropriate strain coefficients. In particular, when 
uii” (t) >:. 0 we have E+, v+, p’(t - T), K+(t - T) and when CT~ i” (t) < 0 we 
have E-, v-, p-(t - z), K-(t - z). 

The remaining cases of a general state of stress will be considered in detail because 
these cases indeed characterize intrinsically the theory of hereditary elasticity of differ- 

ently resistive solids. In these cases, i.e. in domains and points of the second kind Cl]. 

specific phenomena appear which are associated with the differing resistivity of the solid 
under consideration. 

On the basis of the initial assumptions and relationships (2.5), (2.6), the hereditary 
elasticity law in the principal directions s;“(t) will be written as follows: 

eiiO (t) = (aii - u12) 5iio (t) + a12a(t) + C {ibii Ct -z> -bb,,(t-rz)l Qii”(z) + 

-k3 

-1 b,, (t - z) cx (z))dT (3.1) 
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eijo = 0 (i=#=j), 3 (Q = Ql1° (Q + ho (t) + 53sc1 (!I 
(i = 1, 2, 3; j=- 1, 2, 3; not summed over i) 

Proceeding from the results presented above, particularly (2.5) and (2.6). we have for 

the coefficients ai k and bi k in different general cases of the state of stress 

1) (JHO > 0, cTzi” > 0, u3so > 0 

a11 
z Q2 1 a33 z. 1 I E+, al2 = - v+ I E+ (3.2) 

bII L= b,, = bs3 =: K+(t - IG), b,, = - p+(t - T) K+(L - T) 

2) $I0 < 0, 022O < 0, (J33O < 0 
a,1 = f& -_ a;$3 - --1/E-, aIs== -v-IE- (3.3) 

blI = b,, = b,, 1 K-(t - T), b12 = - p-(t - T)K-(t - -c) 

3) %I0 > 0, a2z” < 0, 6330 > 0 

a11 = as3 = 1 1 E+, az2 = 1 I E-, aI = - v+ ! E+ =- - v- I E- 
b,, = b,, z-7 K+(t - -c), b,, = K-Q - T) (3.4) 

b,, = - p+(t - T) KS (t - z) = - p-(t - T) K-(t - T) 

4) (Ju” > 0, f&O < 0: asso < 0 
a,, = 1 I E+, a.,2 .m as3 =: 1 ! E-, aI2 = - V+ i E * - v- I E- 

b,, ~: K+(t - T), b,, : b,, 2 K-Q - T) (3.5) 
b,? x - p+(t - T)K+(~ - T) .~ - ~-(t - T) K-(1 - T) etc. 

The question of symmetry of the coefficients pi k and b, k is not discussed here in 

detail since by proceeding from the assumption of the existence of elastically instantan- 
eous [4] and creep [6, 111 strain potentials, and by duplicating the whole reasoning ex- 

pounded in p-4, 6, 111, it can easily be shown that aik = ski and bik = bki. 

4. The law of .hereditary elasticity can be found by proceeding from (3. l), for the 
initial orthogonal coordinate system 5i, relative to which the position of the principal 

directions xi0 of the point under consideration is defined by using the nine direction 

cosines li, TTli, Tli, which, written in tensor form, satisfy the following conditions : 

c,ic,j = 6,, (4.1) 
where 

6ij = 0 (i #i) 6ij = 1 (i ZZ i) 

The functions c in (4.1) with elements of the coordinate systems Xi and 2i”, and also 
with the direction cosines, are connected by means of the known relationships fl2] 

According to (4.1) and (4.20), the formulas to transform the state of stress and strain 
from one orthogonal coordinate system Zi to another Xi0 are written as follows p2]: 

- 
“i3 

. -= ciPcj4$ 
Pq’ 

eij = ciPcjQ” 
Pq 

Si j” -zz eijo = cp1cyJep17 
(4.3) 

cpzcQ35PQ 1 

(p = 1, 2, 3; ‘I = 1, 2, 3) 
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where, since the coordinate system Xi0 coincides with the principal directions, 

Cp~Ca~Sp* = 0, cpicpjepp = 0 (4.4) 
i. e. 6ij” = 0, eijo = 0 for i +_i , 

Now, in the general case,let the state of stress and strain at a point of the second kind 
under consideration be characterized by the stresses aij(t) and the strains eij(t) in the 

initial Zi coordinate system. The principal directions Zi”(t), the principal stresses 

Oii”(t) and the principal strains eii”(t) will correspond to this state of stress. 

Under the simultaneous action of the principal stresses ait” at the time z, the prin- 

cipal elastically instantaneous strains will appear. which are defined according to (3.1) 
by the formula 

eii” (7) = (a;i - al,_) oiiO (Z) + alz~ (z) (not summed over i ) (4.5) 

and their corresponding elastically instantaneous strains in the initial Xi coordinate sys- 

tem will be defined according to (4.3) by using the formula 

eij(7) = Ci"(%) Cj*(z)e& (r) (4.6) 

Now, let the principal stresses Oii” (z) act for a small time interval dT while remain- 

ing invariant, then small hereditary strains will evidently be manifest in the principal 

directions xi”(?) , which will be defined according to (2.2). (2.4). (3.4) and (3.5) by 

deiio = { [bii (t - Z) - b,, (t - Z)] dii” (Z) + b,a (t - z, Q @)I ax (4.7) 

(not summed over i ) 

and according to (4.3) their corresponding small hereditary strains in the initial xi coor- 
dinate system will be defined by 

deij = ci’ (IT) CjQ (T) de;lq (T) (4.8) 

Integrating (4.8) with respect to Z between the limits --oo and t , taking account of 
(4.7), and adding (4.6) to the corresponding elastically instantaneous strain obtained 

with (4.5) taken into account, we obtain three equivalent relationships after a number 
of manipulations [1], which represent the strains of a hereditary elastic solid in the ini- 

tial coordinate system 

eij (t) = A115ij 
t 

(t) + Alz6ij~ (t) + C+i (6) mj (t) J?‘(L) + C,TZ, (!) nj (t) 333” (t) + 

+ 1 [B,, (t - .t) ~ij (z) + B,, (t - t) 6ij~ (T) + D.; (t - T) mi (T) mj (T) s?~’ (z) + 

-I- D, (t - z) ni (z) nj (a) 5z30 (z) ] dz (4.9) 

eij (t) = A:<:~sij (f) + Als6ijS (t) - C?ii (t) Ij (t) s,,~ (1) - C,m, (t) mj (I) z,,~ (t) + 

t c [B:,, (t - Z) ~ij (z) $- B,, (t - Z) gi;s (z) - D, (t - Z) Zi (z) lj (z) 511’ (it) - 
, 

-33 
- D, (t - t) mi (t) rnj (z) szzc (T)] dz (4.10) 

eij (t) = AzzSij (t) + A,,6ijS(t) - C,lf (t) Zj (t) 511’(t) + C,tZi (t) ?Z,i (t) Z,:;“(t) + 

+ C 1B,, (t - Z) “ij (z) -t B,, (t - ~) 6ij6 (z) - D, (t - .t) Ii (z) lj (z) ~ll” (t) + 
--co 

-1~ D, (t - IT) r&i (T) nj (z) ~3;~ (t)] dT (4.11) 



Here i :- 1, 2, 3, j .rz’: 1, 2, 3, but there is no summation over j when i 1 I 
The representations (4.1)-(4.4) were utilized extensively in obtaining the elasticity 

relationships (4.9)-(4.11). New notation has been intraduced in addition to that used 
earlier, namely : 

A[i = llii - dlq, 

C.‘, -= a33 - a,, 
"11, = a12 (not summed over i ) 

CC? = a33 - %l, c3 = Izq3 - 1111 

Bii (t - T> = bii (f - x) - b,, (t - z> {nor summed over 2’) (ic.Q> 
B,, (t - 2) = b,, (t - T), Jq (t - r) =z 6:j3 (1 - r) - b,, (t - T) 

D, (t - T) m= b,, (t - z) - b,, (t - 7) 

D3 It - a) = b,, (t - T) - b,, (t - x> 

Assuming 

a,, = %2 = as3 =1/E, aI2 = - WE 

h, (t - a? = b,, @ - 7) = b33 it - zf = Ii (t - -c> 

b,, z‘; - p (t - z)K (t - z) 

in the elasticity relationships (4.9)-(4.11). we evidently arrive at the following eiasti- 
city relationship for a hereditary elastic solid : 

ejj (1) = 
Ciij (t) (1 + v) -YSij3 (t) 

E -+ c (Ii (t - z> [I -i_- p(t -z)] “jj (T) - 

- /.A (f - 7) K (;I z) 6;j3 (z)} dz (4.13) 

which agrees with the correspanding classical representation [G-7]. 
The representation (4.13) is even valid for domains of the first kind, it is hence neces- 

sary just to take into account that when ciiiO (t> > 0 we have EC, v+, p+,k’+and when 

oJi (J> < 0, we have E-, v-, pt-, li;-, 
In general, in domains of the second kind the relationships (4.9)-(4.11) can be written 

in a rather shortened form if the signs of the principal stresses are known, The fact is 
that in the most general case at least two principal stresses have the same sign, where- 

upon (see (3.4), (3.5)) one of the coefficients C i and one of the coefficients D i become 
zero. 

6, The elasticity relationships describing the &ear strain occupy a special place in 
the mechanics of bodies of different resistivity. 

Without restricting the generality of the discussion, let us examine shear phenomena 

in the x3 :-= 0 plane for a plane state of stress ((J.~~ =- 0, tr23 =, 0, Cr,, --- 0). 
Let us assume 

xi :’ x, x2 __-Y y, 012 =: zxy, CT12 = e,, / 2, rJj7 = cr,, I_- 0, 

then we obtain for the shear strain from (4.9) 
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then we obtain for the formally introduced concepts of the shear modulus G’ and the 

coefficient of hereditary shear strain o ’ (t - -c) 

(54 
1 

F=2 A, c QIQ (t) 
- A, 

622O (t) 

cm0 (t) - 622” (t) - mu (t) - 522O it) I 

4-9’ (t - Q = 2 [ 4 P - TJ 6,10 ,“;;‘“~~~2c (T) - B, (t - q 

62z0 (z) 

Gl1° (T) - 522O (T) 1 
(54 

Therefore, the quantities G’ and CO’ (t - T), provisionally called the shear modulus 

and the coefficient of hereditary shear strain, respectively, depend essentially on the 
state of stress of the considered point of the solid [Z]. 

It is clear from the above that attempts to construct a general theory of the deforma- 

tion of solids of differing resistivity under the assumption that the shear strains can be 

described by relationships such as (5.2) by the introduction of some values for G’ and o’ 

found from pure shear experiments cannot be considered correct. 
Let us examine the pure shear phenomenon. Let (T, (t) = 0, 0, (t) = 0, zxy (1) = 

=z p {t). Then, evidently 

cr,,” (0 = P 019 6,” (t) = - P (t> 

Taking the above into account, we obtain for the pure shear strain from (5.2)-(5.4) 
according to (4.1) 

(5.5) 

eX!, (t> =z (a,, + a22 - 2%&(C) + s Lb,,@ - z) + b,,(~--t)--2b,,(t -9 JO> & 

Since al: (f> > 0, (~~20 (t) < O- , we have for the coefficients aik and bj k 

a11 = 1 fE+, uQ2 = 1 j E-, a,, = - v” / E’ = - v- / E- 

f31t (t - T) = K+ (t - T), b2, (t - T) = K- (t - T) (5.6) 
b12 (t - ~6) = - p+ (t - T)K+ (t - z) = - p- (t - z)K- (t - ~6) 

Substituting the values of aik and bik from (5.6) into (5.5), we obtain 

ex3J (0 - ( i-t_ v+ -+i+)P(t)+ - p- 
f 

+ $~K’(~-~~l~+p’(t--r)l+K-(~-~)~~+~-(~--t)l~~(~)~~ (5.7) 

We hence obtain for the shear modulus G’ in pure shear and for the hereditary strain 
coefficient in pure shear w ’ 

G’ - EfE- / [E” (1 + v-) + E- (1 + +)I 

w’ =r K’ (t - T) 11 + p+ (t - T)I + K- (t - T) [i -/- p- (t - z)] (5.8) 

Let us assume 
jy+- xxx E- = E, y+ = ‘v- = y, K+ (t -~6) = K- (t - 7) = 

= K (t - ‘61, pyt - z) == p- {t - z) = p (t - ‘F.), 

then from (5.8) we obtain the values of the shear modulus G and the coefficient of 
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hereditary strain in pure shear 01 (t - z) for a classical hereditary elastic solid 

G = E / 2 (1 + Y), w = 2 [1 + p (t - T)lK (t - T) (5.9) 
which are in agreement with known results from classical theory [!I]. 

By virtue of (3.4), (3.5), the value of o ’ (t - T) can he represented by different 
formulas also in the general case, namely : 

6)’ (d - -c) = K+ (t - T) [I + 2~’ (t - T)] + K- (t - T) 
0’ (t - T) x K- (t - T) [I + 2p- (t - -c)l + K+ (t - T) 

6. Substituting the values of A ij and Bij into the relationship (4.9) (the other equi- 

valent relationships (4.10) and (4.11) will not be examined at all), and performing the 
appropriate summation (e (t) = eii (t)), we obtain for the volume strain 

e (t) = (alI + 2ar2) 6 (t) + GQss” (t) + Goss’ (t) + 

---co 

+ &(t - r) Go (Ql d-c (6.1) 

where, as usual, cs (t) = *oi i” (t) :-m crii (t) , or according to (4.12) 

e (2) = (nrr -f 2~7,~) Jrllo (2) t- (~7~~ .:- 2tc,,) szzL (f) -1 (ncl:: -;- 2n,,) 5x32 (I) 

+ 10,s (t - 7) + 2 b,, (I -- 91~22’ (Z) _‘- [ 63.3 (f - Z) t 261, (t .- T)] 5js” (.t)) dT 

Solving the integral equation (6.1) for the function (3 (t), we obtain 

5(t) = 
e (t) -- jl (t) 
a11 + “al? ( rl (t - r) le (t) - I1 (%)I dr (fi.3) 

--03 
t 

n 

jl (t) := C:,5,,0 (t) + C25330 (f) -+- $ [D, (1 - T) a2; (T) -j- Dz (t - z) 3,:; (z) 1 dr 
--a? (0.4) 

where rl (t - T) is the resolvent of the kernel of the integral equation, and the func- 
tion jr (t) characterizes the different resistivity of the considered solid. 

Subtracting one third of the volume strain (6. I), we obtain from (4.9) 

eii (t) - ‘13 e(t) = (%I -- a121 loii (t> - ‘/3 5 (t)l -t- 

(not summed over i ) 

+ $ {4(f-~) 
\ I 

-cc 
( mi2 (r) - $1 a22o (r) -t- D, (t -- T) /:niz (it, - +I ~~3’ (r)) dt 
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Solving the integral equation (6.5) for the stresses Uii (t) while taking account of 
(6.3). we obtain (not summed over i ) 

Qii (t) = 
eii (t) - l/3 e (t) - f3 w 

.- 

all- a12 
$ r2 (t - r> [eii (7) - 

-co 

e (4 - fl (4 
-f e W -fz(.t)]dz + 3(all+ 2a12) - 

1 -- 
c 3 c 

T, (t - z> [e (r> - fl CT) I & (6.7) 

where rz (t - r) is the resolvent of the kernel of the integral equation (6.5) with the 

kernel [b,, (t - T) - 4, (t - T)I. 
Solving the integral equation (4.9) for the stresses oii (2), we obtain (when i # j) 

eij (t) - i3 (4 
i 

6ij (t) = .- 

011 - aI3 s 
r‘2 (! - z, lpij (T) -f3 (z)l dr (ri.8) 

--co 

fs (t) = C3mi (t) lnj (t) 5220 (f) -k C2ni (2) nj (t) $3’(t) + 

The representations fi (t), which characterize the differing resistivity of the considered 
solid, and are zero in particular for a classical elastically hereditary body (C, = C, = 0, 

D3 (t - r) = D, (t - 7) = 0) , are contained in all the formulas presented above for 
the stresses (6.3), (6.7). (6.8). The principal stresses ~~~0 (t), cs30 (t) and the direction 
cosines of the principal directions which can be represented in terms of the strains only 

after the solution of a system of integral equations (3.1) and the joint solution of the 

system (4. l), (4.3), (4.4) for the direction cosines, enter into these representations. In 
the general case this procedure is quite tedious and there is no opportunity to present it 

here. These question have been discussed in Cl-43 for the particular case of a body of 
different moduli. 

1. To solve the problems of a hereditary elastic solid in terms of stresses, let us pro- 
ceed from the strain continuity equations which are c2] 

ei,, j/i + elfi. is - eik, IS - f+, ik -- ~~ 0 (7.1) 

Let us introduce the notation for the linear operators v] 

L,,, (q) = A,;,9 (f) + 1 B,;, (t - Q 9 CT> dt 
--oo 

Lvc [(liqj~rr’l = Ckqi (2) Qj tt) ;i-J o (t) + i Dk (t - T> qi (z) qj (~6) ho (t) dt (7.2) 
--co 

According to (7.2), the expressions (4.9) for the strain are rewritten as follows : 

eij (t) s L,, (Oij) 4 6ijL13 (0) + N, [mimj (522’1 -$- N2 [ninj Onno (7.3) 

Substituting the values of Pij from (7.3) into (7. l), we obtain the following system 
of six equations in the desired stresses oij 
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fjoundary conditions, having the customary form pl2] 

should be added to the system of equations (7.4), where Xi* are the surface loading 

components, and fii the components of the unit normal to the surface. 

The solution of the system of integro-differential equations (7.4) is fraught with great 

difficulties in the general case. f Iowever, as is easy to note, when there are no shear 

stresses in the initial 5i coordinate system in domains of the first kind, the system of 

equations (7.4) simplifies and takes on the structure of the corresponding classical equa- 

tions. 

8. The initial equations of the theory of a hereditary elastic solid in displacements 

can be written by starting from the equilibrium equations which are in the initial coor- 

dinate syste ni [1’L] 5,j, j _I_ [‘Xi -= 0 (8.1) 

where pXi are the volume force components. 

I,et us introduce the following linear operators p]: 

t 

Jl (q) cf (t) _ 
(111 - (112 c rz (t - t) 9 (7) dt 

, 
-Lx (8.2) 

then according to (6. 7), (6. 8). we obtain for the stresses (T ij 

Gij (t) z lV (Pij - ' 36ije) + StjQ(c)- 12 [sijfz + (1 - 6,j) 131 -'iii! (/I! (8.3) 
Substituting the values of (5 ij from (x. :i) into the equilibrium equation, and takmg 

into account that 
1, Vij y $2 (II,. j 4 “j, i)~ e = ilk, k, SijLLi;, i;j _ llj, ij (8.4) 

1t.e obtain tht. following system of integro-differential equations in the desired displace- 

Illt3ltS : 
tZ (t/Till, jj + ‘/,;“j, ij) + Q ('Lj, ij) -- 12 laijla, j + 

t- (1 - S,j) j:r,j) - Q(fiijjl, j) /- o?ii --: 0 (8.5) 

Eliminating terms containing quantities which characterize the different resistivities 

of the solid from the system (8. S), i. e. terms wit11 ji, we obtain the corresponding equa- 

tions of the ordinary theory. 

The solution of the system (8.5), just as (7.4). is a complex problem even in the case 

of classical theory. Llowever, they can be solved in some particular cases even in the 

case of a solid of different resistivity. 

8, Let the mechanical characteristics of the solid under consideration be such that 

the following dependencies exist between the linear operators of a hereditary elastic 

solid : 
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A 
4, (9) = F Nk [4iQj5rTl 7 R (4 = 3 ‘“,:; : z;) Q (qf (9.1) 

k 
whereupon we easily obtain in conformity with (8.2) and (9.1) 

(9.2) 

p (4) = 4 @> - (%I - %J \ r’2 (t - 7) Q w L+c = (9.3) 
---co 

t 
= 

Taking account of (9.1). (9.2), the governing systemsof equations (7.4) and (7.5) are 
rewritten as follows : 

M (A,, (Qs, jk -/- $k, is - Qik, js - %, ik) + 

+ A,3 (6&J, jk + $ka, is - 8ik6, is _- aj$, ik) f c, [ (mimj%AO), jk t 

+ (mjmk622*),is - (mimkb22'), is - (~jms6Z20)7 ikI + 

f ce [ (~~n,$33’), jk f (njnka33’), is - (~i%%~~), is - (“ins633 “) ]} = 0 (9.4) s 2k 

and finally 

P 
i 

’ +Ui,jj 

a11 - Q12 ( + + uj, ij) + 3 tall : za12) C”i, ij) - 
I - 

all - ai 16ijf2, j + (I - 6ij)f3, jl - 

- 
3 tall : za12) tsijfl, j)} + Pxi = O (9.5) 

Examining the system of equations (9.4) and (9.5). let us note that the corresponding 
equations of different-modulus elasticity theory Cl] are written in the braces in both 
systems of equations. The linear operators M (q) and P (q), which characterize the 
hereditary elastic properties of the considered solid, are the multipliers of these equations. 

Therefore, if the conditions (9.1) hold in domains of the second kind of a solid of dif- 

ferent resistivity, then methods of different-modulus theory of elasticity can be utilized 
in considering the state of stress and strain. This means that the Arut~unian theorems 
will be valid for a certain class of problems [5, 73 when conditions (9.1) are conserved, 
even for solids of different resistivity. As regards the domains of the first kind, the initial 
equation will here have the customary structure with appropriate mechanical character- 
istics (E+, v+ , CL*, Kt or E-, v-, p-, K’-), and the Arutiunian theorems will be acceptable 
in the classical formulation [5]. 
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10. Questions of approximating experimental strain curves by using some function of 
the time [S-7] occupy a special place in researches on the mechanics of hereditary 
elastic solids. 

This question is not discussed here since known methods appied for this purpose in the 

ordinary theory [5-71 are completely acceptable even in the case of solids of different 
resistivity. Appropriate analytical representations can be found in the customary manner 

when time strain curves in pure tension and compression are available p3-161. 
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